ISSUES TO ADDRESS...

• When we combine two elements... what is the resulting equilibrium state?

• In particular, if we specify...
 -- the composition (e.g., wt% Cu - wt% Ni), and
 -- the temperature (T)

 then...
 How many phases form?
 What is the composition of each phase?
 What is the amount of each phase?

Phase A

• Nickel atom
 • Copper atom

Phase B
Phase Equilibria: Solubility Limit

- **Solution** – solid, liquid, or gas solutions, single phase
- **Mixture** – more than one phase

Solubility Limit:
Maximum concentration for which only a single phase solution exists.

Question: What is the solubility limit for sugar in water at 20°C?

Answer: 65 wt% sugar.

At 20°C, if \(C < 65 \text{ wt\% sugar} \): syrup
At 20°C, if \(C > 65 \text{ wt\% sugar} \): syrup + sugar

Adapted from Fig. 9.1, *Callister & Rethwisch 8e.*
Components and Phases

- **Components:**
 The elements or compounds which are present in the alloy (e.g., Al and Cu)

- **Phases:**
 The physically and chemically distinct material regions that form (e.g., α and β).

Aluminum-Copper Alloy

Adapted from chapter-opening photograph, Chapter 9, *Callister, Materials Science & Engineering: An Introduction, 3e.*
Effect of Temperature & Composition

- Altering T can change # of phases: path A to B.
- Altering C can change # of phases: path B to D.

Adapted from Fig. 9.1, Callister & Rethwisch 8e.
Chapter 9 -

Criteria for Solid Solubility

Simple system (e.g., Ni-Cu solution)

<table>
<thead>
<tr>
<th>Crystal Structure</th>
<th>electroneg</th>
<th>r (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>FCC</td>
<td>1.9</td>
</tr>
<tr>
<td>Cu</td>
<td>FCC</td>
<td>1.8</td>
</tr>
</tbody>
</table>

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally soluble in one another for all proportions.
Phase Diagrams

- Indicate phases as a function of T, C, and P.
- For this course:
 - binary systems: just 2 components.
 - independent variables: T and C ($P = 1$ atm is almost always used).

Phase Diagram for Cu-Ni system

- 2 phases:
 - L (liquid)
 - α (FCC solid solution)

- 3 different phase fields:
 - L
 - $L + \alpha$
 - α

Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).
Isomorphous Binary Phase Diagram

- Phase diagram: Cu-Ni system.
- System is:
 -- binary
 i.e., 2 components: Cu and Ni.
 -- isomorphous
 i.e., complete solubility of one component in another; \(\alpha \) phase field extends from 0 to 100 wt% Ni.

Adapted from Fig. 9.3(a), *Callister & Rethwisch 8e*. (Fig. 9.3(a) is adapted from *Phase Diagrams of Binary Nickel Alloys*, P. Nash (Ed.), ASM International, Materials Park, OH (1991).
Phase Diagrams: Determination of phase(s) present

- Rule 1: If we know T and C_O, then we know:
 -- which phase(s) is (are) present.

- Examples:

 $A(1100^\circ C, 60$ wt\% Ni)$: 1 phase: α

 $B(1250^\circ C, 35$ wt\% Ni)$: 2 phases: $L + \alpha$

Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).
Phase Diagrams: Determination of phase compositions

- Rule 2: If we know T and C_0, then we can determine:
 - the composition of each phase.

- Examples:
 Consider $C_0 = 35$ wt% Ni
 - At $T_A = 1320^\circ$C:
 Only Liquid (L) present
 $C_L = C_0 \; (=\; 35$ wt% Ni$)$
 - At $T_D = 1190^\circ$C:
 Only Solid (α) present
 $C_\alpha = C_0 \; (=\; 35$ wt% Ni$)$
 - At $T_B = 1250^\circ$C:
 Both α and L present
 $C_L = C_{\text{liquidus}} \; (=\; 32$ wt% Ni$)$
 $C_\alpha = C_{\text{solidus}} \; (=\; 43$ wt% Ni$)$
Phase Diagrams:
Determination of phase weight fractions

• Rule 3: If we know T and C_0, then can determine:
 -- the weight fraction of each phase.

• Examples:

Consider $C_0 = 35$ wt% Ni

At T_A: Only Liquid (L) present
$W_L = 1.00$, $W_\alpha = 0$

At T_D: Only Solid (α) present
$W_L = 0$, $W_\alpha = 1.00$

At T_B: Both α and L present

\[
W_L = \frac{S}{R + S} = \frac{43 - 35}{43 - 32} = 0.73
\]

\[
W_\alpha = \frac{R}{R + S} = 0.27
\]

Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).
The Lever Rule

• Tie line – connects the phases in equilibrium with each other – also sometimes called an isotherm

What fraction of each phase?
Think of the tie line as a lever (teeter-totter)

\[\frac{M_L}{M_L + M_\alpha} = \frac{S}{R + S} = \frac{C_\alpha - C_0}{C_\alpha - C_L} \]

\[W_L = \frac{M_L}{M_L + M_\alpha} \]

\[W_\alpha = \frac{R}{R + S} = \frac{C_0 - C_L}{C_\alpha - C_L} \]

Adapted from Fig. 9.3(b), Callister & Rethwisch 8e.
Ex: Cooling of a Cu-Ni Alloy

• Phase diagram: Cu-Ni system.

• Consider microstuctural changes that accompany the cooling of a C₀ = 35 wt% Ni alloy.
Cored vs Equilibrium Structures

- C_α changes as we solidify.
- Cu-Ni case: First α to solidify has $C_\alpha = 46$ wt% Ni. Last α to solidify has $C_\alpha = 35$ wt% Ni.

- Slow rate of cooling: Equilibrium structure
- Fast rate of cooling: Cored structure

Uniform C_α: 35 wt% Ni

First α to solidify: 46 wt% Ni
Last α to solidify: < 35 wt% Ni
Mechanical Properties: Cu-Ni System

- Effect of solid solution strengthening on:
 - Tensile strength (TS)
 - Ductility ($%EL$)

Adapted from Fig. 9.6(a), Callister & Rethwisch 8e.

Adapted from Fig. 9.6(b), Callister & Rethwisch 8e.
Binary-Eutectic Systems

- 2 components

has a special composition with a min. melting T.

Ex.: Cu-Ag system
- 3 single phase regions (L, α, β)
- Limited solubility:
 - α: mostly Cu
 - β: mostly Ag
- T_E: No liquid below T_E
- C_E: Composition at temperature T_E

- Eutectic reaction

$L(C_E) \rightleftharpoons \alpha(C_{\alpha E}) + \beta(C_{\beta E})$

$L(71.9 \text{ wt\% Ag}) \rightleftharpoons \alpha(8.0 \text{ wt\% Ag}) + \beta(91.2 \text{ wt\% Ag})$

Adapted from Fig. 9.7, Callister & Rethwisch 8e.
EX 1: Pb-Sn Eutectic System

- For a 40 wt% Sn-60 wt% Pb alloy at 150°C, determine:
 -- the phases present
 Answer: $\alpha + \beta$
 -- the phase compositions
 Answer: $C_\alpha = 11$ wt% Sn \\
 $C_\beta = 99$ wt% Sn
 -- the relative amount of each phase
 Answer:

 \[
 W_\alpha = \frac{S}{R+S} = \frac{C_\beta - C_0}{C_\beta - C_\alpha} \\
 = \frac{99 - 40}{99 - 11} = \frac{59}{88} = 0.67
 \]
 \[
 W_\beta = \frac{R}{R+S} = \frac{C_0 - C_\alpha}{C_\beta - C_\alpha} \\
 = \frac{40 - 11}{99 - 11} = \frac{29}{88} = 0.33
 \]
EX 2: Pb-Sn Eutectic System

• For a 40 wt% Sn-60 wt% Pb alloy at 220ºC, determine:
 -- the phases present:
 Answer: \(\alpha + L \)
 -- the phase compositions
 Answer: \(C_\alpha = 17 \text{ wt\% Sn} \)
 \(C_L = 46 \text{ wt\% Sn} \)
 -- the relative amount of each phase
 Answer:
 \[
 W_\alpha = \frac{C_L - C_0}{C_L - C_\alpha} = \frac{46 - 40}{46 - 17} = \frac{6}{29} = 0.21
 \]
 \[
 W_L = \frac{C_0 - C_\alpha}{C_L - C_\alpha} = \frac{23}{29} = 0.79
 \]

Adapted from Fig. 9.8, Callister & Rethwisch 8e.
Microstructural Developments in Eutectic Systems I

- For alloys for which $C_0 < 2$ wt% Sn
- Result: at room temperature -- polycrystalline with grains of α phase having composition C_0
For alloys for which $2 \text{ wt}\% \text{ Sn} < C_0 < 18.3 \text{ wt}\% \text{ Sn}$

Result:

- at temperatures in $\alpha + \beta$ range
- polycrystalline with α grains and small β-phase particles

Adapted from Fig. 9.12, *Callister & Rethwisch 8e.*
Microstructural Developments in Eutectic Systems III

- For alloy of composition $C_0 = C_E$
- Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases.

Adapted from Fig. 9.13, Callister & Rethwisch 8e.

Adapted from Fig. 9.14, Callister & Rethwisch 8e.
Lamellar Eutectic Structure

Adapted from Figs. 9.14 & 9.15, *Callister & Rethwisch 8e.*
Chapter 9 - 22

- For alloys for which 18.3 wt% Sn < C_0 < 61.9 wt% Sn
- Result: α phase particles and a eutectic microconstituent

Microstructural Developments in Eutectic Systems IV

Pb-Sn system

- L: C_0 wt% Sn
- $L + \alpha$
- $\alpha + \beta$
- α and β

Just above T_E:
- C_α = 18.3 wt% Sn
- C_L = 61.9 wt% Sn
- $W_\alpha = \frac{S}{R + S} = 0.50$
- $W_L = (1 - W_\alpha) = 0.50$

Just below T_E:
- C_α = 18.3 wt% Sn
- C_β = 97.8 wt% Sn
- $W_\alpha = \frac{S}{R + S} = 0.73$
- $W_\beta = 0.27$

Adapted from Fig. 9.16, *Callister & Rethwisch 8e.*
Chapter 9 - 23

Hypoeutectic & Hypereutectic

Adapted from Fig. 9.8, Callister & Rethwisch 8e. (Fig. 10.8 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.)

Adapted from Fig. 9.17, Callister & Rethwisch 8e. (Illustration only)

Adapted from Fig. 9.14, Callister & Rethwisch 8e.

Hypoeutectic: $C_0 = 50$ wt% Sn

Eutectic: $C_0 = 61.9$ wt% Sn

Eutectic micro-constituent

Hypereutectic (illustration only)

Adapted from Fig. 9.17, Callister & Rethwisch 8e. (Illustration only)
Intermetallic Compounds

Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value).

Adapted from Fig. 9.20, Callister & Rethwisch 8e.
Eutectic, Eutectoid, & Peritectic

- **Eutectic** - liquid transforms to two solid phases
 \[L \xrightarrow{\text{cool}} \alpha + \beta \] (For Pb-Sn, 183°C, 61.9 wt% Sn)

- **Eutectoid** – one solid phase transforms to two other solid phases
 \[S_2 \leftrightarrow S_1 + S_3 \] (For Fe-C, 727°C, 0.76 wt% C)

- **Peritectic** - liquid and one solid phase transform to a second solid phase
 \[S_1 + L \leftrightarrow S_2 \] (For Fe-C, 1493°C, 0.16 wt% C)
Eutectoid & Peritectic

Cu-Zn Phase diagram

Eutectoid transformation \(\delta \leftrightarrow \gamma + \epsilon \)

Peritectic transformation \(\gamma + L \leftrightarrow \delta \)

Adapted from Fig. 9.21, Callister & Rethwisch 8e.
Iron-Carbon (Fe-C) Phase Diagram

• 2 important points
 - Eutectic (A):
 \(L \rightarrow \gamma + \text{Fe}_3\text{C} \)
 - Eutectoid (B):
 \(\gamma \rightarrow \alpha + \text{Fe}_3\text{C} \)

Result: Pearlite = alternating layers of \(\alpha \) and \(\text{Fe}_3\text{C} \) phases

(Adapted from Fig. 9.27, Callister & Rethwisch 8e.)
Hypoeutectoid Steel

Adapted from Figs. 9.24 and 9.29, Callister & Rethwisch 8e.
(Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Adapted from Fig. 9.30, Callister & Rethwisch 8e.

Chapter 9 - 28
Chapter 9 - 29

Fe₃C (cementite)

1148ºC (Fe-C System)

Hypoeutectoid Steel

Wₐ = s/(r + s)
Wₐ' = S/(R + S)
W_Fe₃C = (1 - Wₐ')

Adapted from Figs. 9.24 and 9.29, Callister & Rethwisch 8e.
(Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Adapted from Fig. 9.30, Callister & Rethwisch 8e.
Chapter 9 - Hypereutectoid Steel

Hypereutectoid Steel

Adapted from Figs. 9.24 and 9.32, Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)
Chapter 9 - Hypereutectoid Steel

![Diagram of Fe-C system showing phase transformations and compositions.]

- $W_\gamma = x / (\nu + x)$
- $W_{Fe_3C} = (1 - W_\gamma)$
- $W_{pearlite} = W_\gamma$
- $W_\alpha = X / (\nu + X)$
- $W_{Fe_3C'} = (1 - W_\alpha)$

Adapted from Figs. 9.24 and 9.32, Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)
Example Problem

For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following:

a) The compositions of Fe$_3$C and ferrite (α).
b) The amount of cementite (in grams) that forms in 100 g of steel.
c) The amounts of pearlite and proeutectoid ferrite (α) in the 100 g.
Solution to Example Problem

a) Using the RS tie line just below the eutectoid

\[C_\alpha = 0.022 \text{ wt}\% \text{ C} \]
\[C_{\text{Fe}_3\text{C}} = 6.70 \text{ wt}\% \text{ C} \]

b) Using the lever rule with the tie line shown

\[W_{\text{Fe}_3\text{C}} = \frac{R}{R + S} = \frac{C_0 - C_\alpha}{C_{\text{Fe}_3\text{C}} - C_\alpha} \]
\[= \frac{0.40 - 0.022}{6.70 - 0.022} = 0.057 \]

Amount of Fe\(_3\)C in 100 g

\[= (100 \text{ g})W_{\text{Fe}_3\text{C}} \]
\[= (100 \text{ g})(0.057) = 5.7 \text{ g} \]
c) Using the VX tie line just above the eutectoid and realizing that

\[C_0 = 0.40 \text{ wt}\% \text{ C} \]
\[C_\alpha = 0.022 \text{ wt}\% \text{ C} \]
\[C_{\text{pearlite}} = C_\gamma = 0.76 \text{ wt}\% \text{ C} \]

\[
W_{\text{pearlite}} = \frac{V}{V + X} = \frac{C_0 - C_\alpha}{C_\gamma - C_\alpha}
\]

\[
= \frac{0.40 - 0.022}{0.76 - 0.022} = 0.512
\]

Amount of pearlite in 100 g

\[
= (100 \text{ g}) W_{\text{pearlite}}
\]

\[
= (100 \text{ g})(0.512) = 51.2 \text{ g}
\]
VMSE: Interactive Phase Diagrams

Microstructure, phase compositions, and phase fractions respond interactively.

Change alloy composition
Alloying with Other Elements

- $T_{\text{euctectoid}}$ changes:

Adapted from Fig. 9.34, Callister & Rethwisch 8e.
(Fig. 9.34 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)

- $C_{\text{euctectoid}}$ changes:

Adapted from Fig. 9.35, Callister & Rethwisch 8e.
(Fig. 9.35 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)
• **Phase diagrams** are useful tools to determine:
 -- the number and types of phases present,
 -- the *composition* of each phase,
 -- and the weight fraction of each phase
 given the temperature and composition of the system.

• The microstructure of an alloy depends on
 -- its composition, and
 -- whether or not cooling rate allows for maintenance of
 equilibrium.

• Important phase diagram phase transformations include
 eutectic, *eutectoid*, and *peritectic*.